The Addition Law Attached to a Stratification of a Hyperelliptic Jacobian Variety

نویسندگان

  • Victor Enolskii
  • Shigeki Matsutani
  • Yoshihiro
چکیده

This article shows explicit relation between fractional expressions of Schottky-Klein type for hyperelliptic σ-function and a product of differences of the algebraic coordinates on each stratum of natural stratification in a hyperelliptic Jacobian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups

We decompose the Jacobian variety of hyperelliptic curves up to genus 20, defined over an algebraically closed field of characteristic zero, with reduced automorphism group A4, S4, or A5. Among these curves is a genus 4 curve with Jacobian variety isogenous to E2 1 × E2 2 and a genus 5 curve with Jacobian variety isogenous to E5, for E and Ei elliptic curves. These types of results have some in...

متن کامل

Co-Z Divisor Addition Formulae in Jacobian of Genus 2 Hyperelliptic Curves over Prime Fields

in this paper we proposed a new approach to divisor scalar multiplication in Jacobian of genus 2 hyperelliptic curves over fields with odd characteristic, without field inversion. It is based on improved addition formulae of the weight 2 divisors in projective divisor representation in most frequent case that suit very well to scalar multiplication algorithms based on Euclidean addition chains....

متن کامل

Fast Arithmetic In Jacobian Of Hyperelliptic Curves Of Genus 2 Over GF(p)

In this paper, we suggest a new fast transformation for a divisor addition for hyperelliptic curves. The transformation targets the Jacobian of genus-2 curves over odd characteristic fields in projective representation. Compared to previously published results, the modification reduces the computational complexity and makes hyperelliptic curves more attractive for applications.

متن کامل

2 00 9 EXPLICIT CONSTRUCTIONS FOR GENUS 3 JACOBIANS Jesus Romero - Valencia & Alexis

Given a canonical genus three curve X = {F = 0}, we construct, emulating Mumford discussion for hyperelliptic curves, a set of equations for an affine open subset of the jacobian JX. We give explicit algorithms describing the law group in JX. Finally we introduce a related construction by means of an imbedding of the open set previously described in a Grassmanian variety.

متن کامل

Hyperelliptic Curves and Cryptography

In 1989, Koblitz proposed using the jacobian of a hyperelliptic curve defined over a finite field to implement discrete logarithm cryptographic protocols. This paper provides an overview of algorithms for performing the group law (which are necessary for the efficient implementation of the protocols), and algorithms for solving the hyperelliptic curve discrete logarithm problem (whose intractab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008